怎样进行算法的复杂度分析?

复杂度分析是估算算法执行效率的方法,公式O(f(n))表示算法的复杂度,此方法即为大O复杂度表示法O(f(n))中n表示数据规模,f(n)表示运行算法所需要执行的指令数。

大O复杂度表示法

下面的代码非常简单,求 1,2,3…n 的累加和,我们要做的是估算它的执行效率。

def calc(n):    sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + i    return sum_

假设每行代码执行的时间都一样为t,执行第2行代码需要时间t,第3,4行代码运行了n遍,需要的时间为2n*t,这段代码总执行时间为(2n+1)* t

结论:代码执行的总时间T(n)与每行代码的执行次数成正比

看下面的代码,估算该段代码的执行时间:

def calc(n):    sum_ = 0    for i in range(n):        for j in range(n):            sum_ = sum_ + i*j    return sum_

同样假设每行代码执行的时间都一样为t:执行第2行代码需要时间t,第3行代码运行了n遍,需要时间为n*t,第4、5行代码运行了n2次,需要时间为2n2 * t,执行所有代码的总时间为 (2n2 + n + 1)* t。

结论:代码执行的总时间T(n)与每行代码的执行次数成正比。

用O(f(n))来表示算法复杂度:

def calc(n):    sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + i    return sum_
def calc(n):    sum_ = 0    for i in range(n):        for j in range(n):            sum_ = sum_ + i*j    return sum_

T(n) = O(f(n)) , O表示代码的执行时间T(n) 与 f(n)表达式成比例。

大O复杂度表示法:上面例子中的T(n) = O(2n+1), 另一个 T(n) = O(2n² + n + 1)。大O时间复杂度并不表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

当数据量特别大, 也就是n的取值很大的时候,大O表示法中低阶、常量、系数三部分并不会左右增长趋势,可以忽略。

def calc(n):    sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + i    return sum_
def calc(n):    sum_ = 0    for i in range(n):        for j in range(n):            sum_ = sum_ + i*j    return sum_

上面例子中的T(n) = O(2n+1), 另一个 T(n) = O(2n² + n + 1),用大O表示法表示上面两段代码的时间复杂度,可以记为O(n),O(n²)。

算法A: O(n) 执行指令,10000*n

def calc(n):    sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + I  """  此处省略n行... ...  """    return sum_

算法B: O(n²) 执行指令数,10*n2

对比上面两个算法,当 n = 10, n=100 时, 算法B执行的速度更快,n = 1000 时两者速度相当

n = 104 , n = 105, n = 106 ,算法A执行的速度更快的

随着数据规模的进一步增大, 这个差距会越来越大

时间复杂度分析

如何分析一段代码的时间复杂度?

在分析一个算法、一段代码的时间复杂度时,只关注循环执行次数最多的那一段代码就可以了。

def calc(n):    sum_ = 0    for i in range(n):        for j in range(n):            sum_ = sum_ + i*j    return sum_

上面的代码中,我们只需要关注内层for循环的时间复杂度就可以了,内层for循环的两行代码被执行了n2次,所以总的时间复杂度就是O(n²)

总复杂度等于量级最大的那段代码的复杂度

def calc(n):sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + i    sum_1 = 0    for i in range(1,n+1):        for j in range(n):            sum_1 = sum_1 + i*j    return sum_+sum_1

上面的代码分为两部分,分别是求 sum_、sum_1,计算sum_部分的代码段时间复杂度O(n),计算sum_1部分的代码段时间复杂度为O(n²) ,总的时间复杂度由复杂度最大的部分决定, 所以上面代码复杂度为O(n²)。

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

def fn(n):    sum_ = 0    for i in range(n+1):        sum_ = sum_ + i    return sum_def calc(n):    sum_ = 0    for i in range(n+1):        sum_ = sum_ + fn(i)    return sum_

上面的代码中第二个函数调用了第一个函数, 如果把fn函数调用当作一个普通操作, 那么第二个函数的时间复杂度为O(n) Fn函数的时间复杂度为O(n),那么函数整体的时间复杂度为O(n*n) = O(n²)。

当两段代码的数据规模不同时,不能省略复杂度低的部分

def calc(n):sum_ = 0    for i in range(1,n+1):        sum_ = sum_ + i    sum_1 = 0    for i in range(1,m+1):        for j in range(m):            sum_1 = sum_1 + i*j    return sum_+sum_1

上面的代码分为两部分,分别是求 sum_、sum_1,计算sum_部分的代码段时间复杂度O(n),计算sum_1部分的代码段时间复杂度为O(m2) ,总的时间复杂度由复杂度最大的部分决定, 所以上面代码复杂度为O(m²+n)

文章来源于:王晴儿网页设计博客 欢迎分享交流,转载请注明出处

本文来自投稿,不代表重蔚自留地立场,如若转载,请注明出处https://www.cwhello.com/262415.html

如有侵犯您的合法权益请发邮件951076433@qq.com联系删除

(0)
黑马程序员黑马程序员订阅用户
上一篇 2023年5月7日 07:27
下一篇 2023年5月8日

相关推荐

  • 什么是SVM算法?硬间隔和软间隔的分类问题

    SVM全称是supported vector machine(支持向量机),即寻找到一个超平面使样本分成两类,并且间隔最大。SVM能够执行线性或⾮线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用…

    2023年8月29日 编程技术分享
    01
  • 教你SEO优化如何适应百度日新月异的算法更新。

    百度算法的更新可以说是日新月异,目的是为了优化算法,应对一些不良的seo方法,同时给用户带来更好的搜索体验。那么如何才能够让自己的seo优化工作做到与时俱进,能够符合百度优化的需求呢?下面小编分别从以下几点…

    2023年6月27日
    00
  • “猫头鹰”是谷歌内部代码名称

    去年以来,Google搜索面临一类以前比较少见的问题,虚假新闻内容是源头,进而带来一系列相关问题,如: 编造的假新闻 带有极度偏见、煽动仇恨的内容 谣言、阴谋论类内容 冒犯性、误导性内容 这类问题被用户看到、搜…

    2022年5月24日
    0192
  • 教你如何面对seo内在算法的一些变化。

    如何面对seo内在算法的一些变化 在面对seo内在算法不断变化的时候,我们要清楚的去看到具体的算法的变化,涉及到很多的东西,如果能够认真的去关注各个方面的内容,对于具体的内在的算法有了更多的了解,那么你在做…

    2022年11月14日
    00
  • 教你HITS算法。

    HITS算法        HITS是英文Hyperlink-Induced Topic Search的缩写,意译为“超链诱导主题搜索”。HITS算法由Jon Kleinberg于1997年提出,并申请了专得:http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6,1…

    2023年6月18日
    03
  • 递归排序算法快速排序的实现过程

    快速排序(Insertion Sort)也是一种递归排序算法。快速排序原理:先以列表中的任意一个数为基准(一般选头或尾),将列表分为左、右两个子列表。左子列表的数要比基准数小,右子列表的数要比基准数大。然后继续把左子…

    2023年8月29日 编程技术分享
    01
  • 学习抖音算法能帮你抖音上热门!

    任何搜索引擎或者展示内容都会有自己的算法,包括百度有百度的算法、微信有微信的算法、头条也头条的算法,算法是任何平台必不可少的机制,所以我们先来分析关于抖音算法的三大问题。 一、前言 算法是什么? 简单通…

    2019年2月21日
    0450
  • 小编分享建立网站企业品牌为什么那么重要。

    建立网站企业品牌为什么那么重要? 对于搜索引擎而言,为什么政府、科研机构、大学、社会福利部门的官方网站优化具有较高的排名,因为,这些网站在某个垂直领域,具有极高的权威度,以及社会影响力。 这就是为什么…

    2022年11月14日
    01

联系我们

QQ:951076433

在线咨询:点击这里给我发消息邮件:951076433@qq.com工作时间:周一至周五,9:30-18:30,节假日休息